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1 Introduction

A comparison of the computational cost associated with parallelotopes (quadri-
laterals and hexahedra) and simplices (triangles and tetrahedra) is presented.
Specifically, we compare the cost of element-wise and global operations for
different Galerkin methods and interpolation degrees. The estimates show
that simplices outperform parallelotopes for element-wise operations, except
for linear elements. On the contrary, parallelotopes outperform simplices for
global operations that depend non-linearly on the number of mesh faces. For
instance, solving a hybridized discontinuous Galerkin linear system with a
sparse direct solver. Similar comparisons have been presented before but only
for triangles and quadrilaterals [1, 2, 3].

Mesh hypothesis. We consider structured meshes of dimension d = 2, 3
and interpolation degree p, where the number of boundary faces is negligible
compared with the number of interior faces. Given a structured quadrilateral
(hexahedral) mesh, the triangular (tetrahedral) mesh is obtained by dividing
each quadrilateral (hexahedron) in 2 triangles (6 tetrahedra), Figure 1. In the
following, we denote the number of elements (faces) with ne (nf ), and the
number of degrees of freedom per element (face) with ndofe (ndoff ).

Proposed comparison. Let us consider an operation with the cost
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q
,

where r, q ≥ 1, and entity can be either an element or a face. Then boxes are
better than simplices if and only if(
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where the superscripts a and b stand for simplices and parallelotopes, re-
spectively. Assuming the same precision for parallelotopes and simplices, we
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Fig. 1: Splitting quadrilaterals (hexahedra) in triangles (tetrahedra).
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Table 1: Ratios of: (left) number of entities, and (right) ndof per element (face).

present in Table 1a and Table 1b the corresponding ratios for the number of
entities (nentity) and the number of degrees of freedom per entity (ndofentity),
respectively. Simplices have higher number of elements (faces), but less ndof

per element (face). Thus, for element-wise operations that depend linearly
with the number of elements, and non-linearly with the ndof per element, we
can expect that simplices perform better. On the contrary, for global opera-
tions that depend non-linearly with the number of faces, parallelotopes should
perform better due to the smaller number of faces.

In the remainder of this note, we compare the cost of element-wise and
global operations for different interpolation degrees and Galerkin methods
(Section 2). We consider the following methods: continuous Galerkin with
and without static condensation (CG and CG(NSC)) [4], compact discontinu-
ous Galerkin (CDG) [5], and the hybridizable discontinuous Galerkin method
(HDG) [6, 7]. We finalize with the concluding remarks (Section 3).

2 Cost comparison: simplices versus parallelotopes

2.1 Element-wise operations

Creating element matrices. To compute an elemental matrix, we approxi-
mate with ndofe integration points an integral that pairs ndofe test functions
with ndofe trial functions. This results in a cost of ndof3e operations. Thus,
the total cost for creating the element matrices is E = ne ·ndof3e. For straight-
sided elements, the Jacobian is constant and therefore, the cost can be reduced
to EJ = ne · ndof2e.

Removing the inner degrees of freedom. For high-order methods is
standard to parameterize the degrees of freedom in the interior of the elements
in terms of the degrees of freedom on the faces. This results in a reduced
global system that only depends on the degrees of freedom on the faces. This
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Fig. 2: Cost ratio for element-wise operations: (left) triangles over quadrilaterals,
and (right) tetrahedra over hexahedra.

technique corresponds to the static condensation in CG and the solution of
the local problem in HDG. For an element, the cost of this parameterization
is dominated by the cost of inverting a dense elemental matrix, Ie. Thus, the
total cost is

L = ne · Ie = ne ·
(

8

3
ndof3e +

9

2
ndof2e −

7

6
ndofe

)
. (1)

Recovering the inner degrees of freedom. Once the global system for
the degrees of freedom on the faces is solved, we can recover the inner degrees
of freedom. To this end, we use the already computed parameterization in
terms of the degrees of freedom on the faces. For one element this cost is
dominated by the multiplication of dense matrices of size ndofe × (d + 1) ·
ndoff for simplices, and ndofe × 2d · ndoff for parallelotopes, where d is the
dimension. The resulting cost is

R = ne ·Re = ne · (2(d + 1) · ndoff · ndof2e)

for simplices, and

R = ne ·Re = ne · (4d · ndoff · ndof2e)

for parallelotopes.

Results for element-wise operations. Figure 2 shows the ratios of the
costs associated with triangles (tetrahedra) and quadrilaterals (hexahedra)
for: constructing the element matrices with and without constant Jacobian
(EJ and E), solving the local problem (L), and reconstructing the local vari-
ables (R). Note that all element-wise operations depend linearly with the
number of entities, and non-linearly with the ndof per entity. Hence, sim-
plices are computationally cheaper for element-wise operations.

2.2 Solving the global problem

Pre-conditioned iterative solver. The cost per iteration is dominated
by the cost of forming the Krylov subspace, which consists of performing
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Fig. 3: Cost ratios for one iteration of an iterative solver: (left) triangles over
quadrilaterals, and (right) tetrahedra over hexahedra.

the sparse matrix-vector product yk = Axk, and applying the M−1 pre-
conditioning operator. A reasonable pre-conditioner would be incomplete LU
factorization with zero fill-in (ILU0) [8]. It can be shown that the cost per
iteration for Galerkin methods when static condensation is used grows with
nf · ndof2f , and when static condensation is not used with ne · ndof2e.

Figure 3 shows the results for different interpolation degrees (p) and meth-
ods (CG [4], CG(NSC)[4], CDG[5], and HDG[6]).

Solving the HDG global system with a sparse direct solver. The
HDG method leads to a sparse matrix structured in dense blocks (of size
ndoff ). We assume that nested dissection [9, 10] is used to renumber the de-
grees of freedom on the edges (faces). Thus, the number of floating operations
to solve the global system with a sparse direct solver is

G = n
d+1
2

f · If = d
d+1
2 · n

d+1
2

e · If , (2)

for parallelotopes, and

G = n
d+1
2

f · If =

(
d + 1

2

) d+1
2

· n
d+1
2

e · If , (3)

for simplices. In these expressions, n
d+1
2

f is the cost of factoring the system

matrix, and If =

(
8

3
ndof3f +

9

2
ndof2f − 7

6
ndoff

)
is the cost of the inversion

of a dense block of size ndoff × ndoff . Figure 4 shows the cost ratios for
solving the global system arising from HDG .

3 Concluding remarks

We conclude that simplices are more efficient than parallelotopes for element-
wise operations, which, depend linearly on the number of elements and non-
linearly on the ndof per element. This is also the case for the cost of one
iteration of a preconditioned iterative solver, except in 2D, where quadrilat-
erals are more efficient than triangles for reduced global linear systems (such
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Fig. 4: Cost ratio for solving the HDG global system with a sparse direct solver:
(left) triangles over quadrilaterals, and (right) tetrahedra over hexahedra .

as in CG and HDG). If the inner degrees of freedom are not removed (such as
in CG(NSC) and CDG), triangles are cheaper. In 3D, tetrahedra are always
faster per iteration. Finally, parallelotopes are more efficient than simplices
for operations where the cost grows non-linearly with the number of faces.
For instance, the cost of solving the HDG global system with a sparse direct
solver.
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